| Basic info | Taxonomic history | Classification | Included Taxa |
| Morphology | Ecology and taphonomy | External Literature Search | Age range and collections |
Leda calcarensis
Taxonomy
Nucula calcarensis was named by Conrad (1848). It is a 3D body fossil. Its type locality is Vicksburg, which is in a Rupelian marine marl in the Byram Marl Formation of Mississippi.
It was recombined as Leda calcarensis by Harris (1919).
It was recombined as Leda calcarensis by Harris (1919).
Sister species lacking formal opinion data
L. africae, L. angulatostriata, L. angulatostriata, L. argoviensis, L. attenuata, L. australis, L. australis, L. basilissa, L. bicuspidata, L. bonelli, L. chahalisensis, L. coelatella, L. conica, L. curta, L. degeeri, L. diana, L. dilatata, L. diphya, L. dodona, L. flexuosa, L. fragilis, L. hamlinensis, L. huttoni, L. lebescontei, L. leiorhyncha, L. leptalea, L. liciata, L. limulata, L. linifera, L. mariae, L. meekana, L. megumaensis, L. milamensis, L. minima, L. minuta, L. nuda, L. oblongoides, L. oscheneri, L. oschneri, L. oschsneri, L. ovoides, L. percaudata, L. phacoides, L. polychoa, L. polychoa, L. prolongata, L. proteracuta, L. pulchra, L. robsoni, L. rowleyi, L. saffordana, L. seeleyi, L. stilla, L. striata, L. tenuisulcata, L. trochila, L. trochilia, L. trochilia, L. trochilia, L. concava, L. fulgida, L. bonellii, L. swiftiana
Synonymy list
| Year | Name and author |
|---|---|
| 1848 | Nucula calcarensis Conrad |
| 1919 | Leda calcarensis Harris p. 70 |
Is something missing? Join the Paleobiology Database and enter the data
|
|
If no rank is listed, the taxon is considered an unranked clade in modern classifications. Ranks may be repeated or presented in the wrong order because authors working on different parts of the classification may disagree about how to rank taxa.
†Leda calcarensis Conrad 1848
show all | hide all
Diagnosis
No diagnoses are available
Measurements
No measurements are available
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|||||
|
|
||||
| Source: f = family, c = class | |||||
| References: Kiessling 2004, Aberhan et al. 2004 | |||||