Basic info | Taxonomic history | Classification | Included Taxa |
Morphology | Ecology and taphonomy | External Literature Search | Age range and collections |
Mikaparia milena
1852 Conocephalites striatus Emmrich. – Barrande (partim), pl. 14, figs 1, 6, pl. 29, fig. 39. 1944 Ptychoparia striata (Emmrich). – Růžička, p. 6, text-fig. 4 (refigured by Šnajdr, 1958, pl. 39, fig. 2). 1955 Ptychoparia striata Emmrich. – Hupé, p. 129, fig. III/1. 1958 Ptychoparia striata (Emmrich, 1839). – Šnajdr (partim), p. 185, text-fig. 40, pl. 38, figs 17, 18, pl. 39, figs 1, 2, pl. 40, figs 3, 5. 1959 Ptychoparia striata (Emmrich). – Moore, p. O233, fig. 170:6. 1970 Ptychoparia striata (Emmrich, 1839). – Horný & Bastl (partim), pl. 4, fig. 1, Catalogue pp. 301, 302. 1989 Ptychoparia striata. – Prokop, fig. on p. 155. 1990 Ptychoparia striata (Emmrich, 1839). – Šnajdr, p. 94, fig. on p. 95. 1992 Ptychoparia sp. nov. – Fatka&Kordule, pl. 2, fig. 7. 1993 Ptychoparia striata (Emmrich). – Chlupáč, p. 156, pl. 1, fig. 11. 1996 Ptychoparia sp. nov. – Kordule, pl. 2, fig. 6. 2002 ?Ptychoparioides sp. – Valíček&Szabad, p. 80, pl. 1, fig. 5.
Year | Name and author |
---|---|
2006 | Mikaparia milena Kordule pp. 286 - 288 fig. 4A–H |
Is something missing? Join the Paleobiology Database and enter the data
|
|
If no rank is listed, the taxon is considered an unranked clade in modern classifications. Ranks may be repeated or presented in the wrong order because authors working on different parts of the classification may disagree about how to rank taxa.
Reference | Diagnosis | |
---|---|---|
V. Kordule 2006 | Mikaparia with subtrapezoidal, forward tapering and anteriorly rounded glabella; S1 long, strongly curved backward, S2, and S3 shorter and shallower, S3 almost normal to sagittal axis; S4 weekly impressed; anterior border conspicuous, short (sag.), gently convex; average LCr/LAB cca 10.0; pygidial axis with six rings and sub triangular terminal piece; five ribs on pleural field. |
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
Source: f = family, c = class | |||||
References: Hendy 2009, Aberhan et al. 2004 |